首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1380篇
  免费   277篇
  国内免费   508篇
  2024年   3篇
  2023年   66篇
  2022年   48篇
  2021年   61篇
  2020年   116篇
  2019年   108篇
  2018年   109篇
  2017年   104篇
  2016年   102篇
  2015年   104篇
  2014年   77篇
  2013年   122篇
  2012年   83篇
  2011年   100篇
  2010年   76篇
  2009年   86篇
  2008年   84篇
  2007年   74篇
  2006年   84篇
  2005年   62篇
  2004年   45篇
  2003年   54篇
  2002年   56篇
  2001年   53篇
  2000年   38篇
  1999年   26篇
  1998年   32篇
  1997年   15篇
  1996年   11篇
  1995年   18篇
  1994年   15篇
  1993年   14篇
  1992年   13篇
  1991年   13篇
  1990年   20篇
  1989年   10篇
  1988年   6篇
  1987年   10篇
  1986年   7篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   4篇
  1980年   4篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1958年   4篇
排序方式: 共有2165条查询结果,搜索用时 15 毫秒
1.
2.
Risk assessments often rely on deterministic models using long-term averages or “steady-state” values of input variables. Such models do not provide the information needed to estimate acute exposures. This study uses extreme value theory to examine the frequency and magnitude of daily pollutant concentrations in surface soils predicted at six U.S. locations. Concentrations are predicted using a deposition-leaching model and 50 years of historical precipitation data. A stochastic model also is used to generate 1000 years of precipitation data as modeling inputs for each location. The annual maximum concentrations at each site are fitted to a Gumbel type I distribution to estimate occurrence probability. For soluble pollutants, the predicted concentration varied substantially with precipitation, and the maximum daily concentrations exceeded annual averages by 4 to 8 times. Observed and synthetic precipitation data produced similar results at most study locations, though the synthetic data provided a slightly better fit to the Gumbel type I distribution. The precipitation model allows the generation of representative precipitation data that extend limited historical records. The extreme value analysis facilitates the evaluation of maximum pollutant concentrations, return periods, and other statistics that are important in evaluating acute exposures.  相似文献   
3.
Despite the importance of tropical birds in the development of life history theory, we lack information about demographic rates and drivers of population dynamics for most species. We used a 7‐year (2007–2013) capture‐mark‐recapture dataset from an exceptionally wet premontane forest at mid‐elevation in Costa Rica to estimate apparent survival for seven species of tropical passerines. For four of these species, we provide the first published demographic parameters. Recapture probabilities ranged from 0.21 to 0.53, and annual estimates of apparent survival varied from 0.23 to 1.00. We also assessed the consequences of inter‐annual variation in rainfall on demographic rates. Our results are consistent with inter‐annual rainfall increasing estimates of apparent survival for two species and decreasing estimates for three species. For the three species where we could compare our estimates of apparent survival to estimates from drier regions, our estimates were not consistently higher or lower than those published previously. The temporal and spatial variability in demographic rates we document within and among species highlights the difficulties of generalizing life history characteristics across broad biogeographic gradients. Most importantly, this work emphasizes the context‐specific role of precipitation in shaping tropical avian demographic rates and underscores the need for mechanistic studies of environmental drivers of tropical life histories.  相似文献   
4.
5.
1 In 1997, we ran two Malaise insect traps in each of four stands of wet forest in Costa Rica (two old‐growth and two 20‐year‐old stands) and four stands of moist forest in Panama (old‐growth, 20, 40 and 120‐year‐old stands). 2 Wet forest traps caught 2.32 times as many ichneumonoids as moist forest traps. The average catch per old‐growth trap was 1.89 times greater than the average catch per second‐growth trap. 3 Parasitoids of lepidopteran larvae were caught in higher proportions in the wet forest, while pupal parasitoids were relatively more active in the moist forest. 4 We hypothesize that moisture availability is of key importance in determining parasitoid activity, community composition and trophic interactions.  相似文献   
6.
Aim We investigate the long‐standing question of whether the small size of microbes allows most microbial species to colonize all suitable sites around the globe or whether their ranges are limited by opportunities for dispersal. In this study we use a modelling approach to investigate the effect of size on the probability of between‐continent dispersal using virtual microorganisms in a global model of the Earth’s atmosphere. Location Global. Methods We use a computer model of global atmospheric circulation to investigate the effect of microbe size (effective diameters of 9, 20, 40 and 60 μm) on the probability of aerial dispersal. Results We found that for smaller microbes, once airborne, dispersal is remarkably successful over a 1‐year period. The most striking results are the extensive within‐hemisphere distribution of virtual microbes of 9 and 20 μm diameter and the lack of dispersal between the Northern and Southern Hemispheres during the year‐long time‐scale of our simulations. Main conclusions Above a diameter of 20 μm wind dispersal of virtual microbes between continents becomes increasingly unlikely, and it does not occur at all (within our simulated 1‐year period) for those of 60 μm diameter. Within our simulation, the success of small microbes in long‐distance dispersal is due both to their greater abundance and to their longer time in the atmosphere – once airborne – compared with larger microbes.  相似文献   
7.
In a conventional protein downstream processing (DSP) scheme, chromatography is the single most expensive step. Despite being highly effective, it often has a low process throughput due to its semibatch nature, sometimes with nonreproducible results and relatively complex process development. Hence, more work is required to develop alternative purification methods that are more cost-effective, but exhibiting nearly comparable performance. In recent years, surfactant precipitation has been heralded as a promising new method for primary protein recovery that meets these criteria and is a simple and cost-effective method that purifies and concentrates. The method requires the direct addition of a surfactant to a complex solution (e.g. a fermentation broth) containing the protein of interest, where the final surfactant concentration is maintained below its critical micelle concentration (CMC) in order to allow for electrostatic and hydrophobic interactions between the surfactant and the target protein. An insoluble (hydrophobic) protein–surfactant complex is formed and backextraction of the target protein from the precipitate into a new aqueous phase is then carried out using either solvent extraction, or addition of a counter-ionic surfactant. Importantly, as highlighted by past researchers, the recovered proteins maintain their activity and structural integrity, as determined by circular dichroism (CD). In this review, various aspects of surfactant precipitation with respect to its general methodology and process mechanism, system parameters influencing performance, protein recovery, process selectivity and process advantages will be highlighted. Moreover, comparisons will be made to reverse micellar extraction, and the current drawbacks/challenges of surfactant precipitation will also be discussed. Finally, promising directions of future work with this separation technique will be highlighted.  相似文献   
8.
The role of cyanobacteria in crystallization of magnesium calcites   总被引:1,自引:0,他引:1  
Laboratory experiments showed the effect of the cyanobacterium Microcoleus chthonoplastes on the formation of magnesium calcites, using model solutions (2.14M MgCl2-0.05M CaCl2-0.6M NaCl-0.18M NaHCO3). The conditions of existence of cyanobacteria in such solutions in light or darkness significantly alter the structure of the sediment and the shape and size of the carbonate crystals. Cyanobacteria slow down crystallization due to the formation of exometabolites with a chelating effect, which leads to the precipitation of high-magnesium calcites. In the photosynthetic environment the presence of huntite (CaMg3(CO3)4), possible forerunner of dolomite, is prominent.  相似文献   
9.
Soybeans were grown at three CO2 concentrations in outdoor growth chambers and at two concentrations in controlled-environment growth chambers to investigate the interactive effects of CO2, temperature and leaf-to-air vapour pressure difference (LAVPD) on stomatal conductance. The decline in stomatal conductance with CO2 was a function of both leaf temperature and LAVPD. In the field measurements, stomatal conductance was more sensitive to LAVPD at low CO2 at 30 °C but not at 35 °C. There was also a direct increase in conductance with temperature, which was greater at the two elevated carbon dioxide concentrations. Environmental growth chamber results showed that the relative stomatal sensitivity to LAVPD decreased with both leaf temperature and CO2. Measurements in the environmental growth chamber were also performed at the opposing CO2, and these experiments indicate that the stomatal sensitivity to LAVPD was determined more by growth CO2 than by measurement CO2. Two models that describe stomatal responses to LAVPD were compared with the outdoor data to evaluate whether these models described adequately the interactive effects of CO2, LAVPD and temperature.  相似文献   
10.
Tropical climates and the biodiversity associated with them have long interested natural historians. Alexander von Humboldt inspired a generation of scientists, such as Charles Darwin and Alfred Russel Wallace, to observe and study tropical ecosystems. More recently, the mid‐20th century saw Theodosius Dobzhansky and Daniel Janzen lay the foundations for studying adaptation to tropical climates. Now in the 21st century, we are beginning to realize the threats posed by current and future climate change to tropical populations which, despite relatively low levels of projected warming for low‐latitude regions, face potentially significant detrimental impacts. Building on the insights of researchers in decades and centuries past, improved understanding of tropical ecology, evolution and biogeography will help us to conceive how future global change will impact on biodiversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号